Research by Australian scientists could pave the way to a new treatment for a currently incurable brain cancer in children called Diffuse Intrinsic Pontine Glioma, or DIPG.
Affecting about 20 children in Australia each year, DIPG is a devastating disease with an average survival time of just nine months after diagnosis.
The research, led by scientists at Children’s Cancer Institute and published this week in the international journal, Cell Reports, offers an exciting new therapeutic approach for the treatment of DIPG by using a new anti-cancer drug.
Read more: Behind the science | Professor David Ziegler
The new drug, CBL0137, is an anti-cancer compound developed from the antimalarial drug quinacrine. The researchers found that CBL0137 directly reverses the effects of the key genetic drivers in DIPG, and has a profound effect against DIPG tumour models. They also found CBL0137 is even more effective when combined with a second drug, panobinostat, a new type of drug known as a histone deacetylase (HDAC) inhibitor. When used in combination, the two drugs were found to work synergistically, each enhancing the other effects against DIPG.
Associate Professor David Ziegler, Group Leader at Children’s Cancer Institute and paediatric oncologist at the Kids Cancer Centre, Sydney Children’s Hospital, said there is a desperate need for a new and more effective way to treat DIPG.
“Over the years, many different types of treatments have been tried for DIPG, but none so far have proven effective in clinical trials of children with the disease,” he said. “Part of the problem is that the genetic driver in DIPG is a master gene that controls thousands of other genes. Until now, we have not known how to switch it off. Our data shows that CBL0137 acts to reverse the effects of this master gene, and then switch off the growth of the DIPG tumour cells.”